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Abstract

Natural biopolymers such as alginate have become important materials for a variety of 

biotechnology applications including drug delivery, cell encapsulation and tissue engineering. 

This expanding use has spurred the development of new approaches to engineer these materials at 

the nano- and microscales to better control cell interactions. Here we describe a method to 

fabricate freestanding alginate-based microfibers and microstructures with tunable geometries 

down to approximately 3 μm. To do this, a polydimethylsiloxane (PDMS) stamp is used to 

micromold alginate or alginate-fibrin blends onto a sacrificial layer of thermally-sensitive poly(N-

isopropylacrylamide) (PIPAAm). A warm calcium chloride solution is then used to crosslink the 

alginate and upon cooling below the lower critical solution temperature (~32° C) the PIPAAm 

layer dissolves and releases the alginate or alginate-fibrin as freestanding microfibers and 

microstructures. Proof-of-concept experiments demonstrate that C2C12 myoblasts seeded onto the 

alginate-fibrin microfibers polarize along the fiber length forming interconnected cell strands. 

Thus, we have developed the ability to engineer alginate-based microstructured materials that can 

selectively bind cells and direct cellular assembly.

1. Introduction

Naturally-derived biopolymers are used in a variety of biotechnology applications including 

drug delivery [1-3], cell encapsulation [4-6], wound dressings [7, 8], and as tissue 

engineering scaffolds [9-11]. Alginate is commonly used because it is a linear 

polysaccharide that can be derived in large quantities from algae, yet is similar to the 

glycosaminoglycans found in the extracellular matrix (ECM) in animals. Specifically, 

alginate is hydrophilic, has low immunogenicity, is non-toxic, and can be crosslinked in the 

presence of divalent cations, such as calcium, to form hydrogels [12, 14], microparticles 

[15], and fibers [9, 10, 16]. These properties have led to the use of alginate-based materials 

for the regeneration of skin [17, 18], cartilage [19, 20], and bone tissue [20-22]. 

Additionally, alginate can be easily modified to tune mechanical properties [23] or 

engineered with defined surface topographies to direct cell behavior [24]. Incorporating 

micro- and nanoscale topographical and chemical patterning is particularly important 

because features over this spatial range enable these materials to further mimic the 

composition and architecture of the ECM in tissues and influence a variety of processes [25] 
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such as cell adhesion [26, 27], alignment [28, 29], and migration [30]. Thus, microscale 

engineering of alginate has the potential to improve the ability of these biomaterials to 

control cell behavior in tissue engineering applications.

To date, researchers have developed a number of approaches to create micro- and nanoscale 

alginate fibers and structures. For example, coaxial flow based microfluidic devices [16, 31] 

and electrospinning [9, 10] techniques have established the ability to fabricate alginate fibers 

with micro- and nanoscale diameters, respectively. While these methods can create fibrous 

scaffolds for either cell encapsulation [31] or cell growth [9, 10], they are limited by the 

number of possible fiber geometries and orientations. Greater geometrical control can be 

achieved through the use of micromolding techniques with poly(dimethylsiloxane) (PDMS) 

stamps, which has been used to fabricate microstructured hydrogels out of materials such as 

hyaluronic acid [6], chitosan [32], and poly(ethylene glycol) [33]. Topographically patterned 

alginate has also been formed using microfabricated agarose stamps loaded with CaCl2 to 

form crosslinks [24, 34]. These micromolded alginate structures are typically tens to 

hundreds of micrometers in thickness, and thus have sufficient mechanical strength to be 

manually removed from the surface they were molded on. However, alginate structures on 

the order of a few micrometers in thickness, particularly those with a high surface area to 

volume ratio, are difficult to remove without damaging them.

We hypothesized that by combining micromolding with a sacrificial release surface we 

could fabricate geometrically well-defined, freestanding alginate fibers and structures at the 

micrometer scale. To test this we modified a fiber fabrication approach termed surface-

initiated assembly (SIA) [35], which can produce freestanding ECM protein nanofibers and 

nanostructures. We found that the PDMS stamps originally used in SIA for microcontact 

printing could instead be used as micromolds to pattern alginate and alginate-fibrinogen 

blends on a thermally sensitive, poly(N-isopropylacrylamide) (PIPAAm) surface. 

Physiologic levels of CaCl2 are sufficient to crosslink the micromolded alginate and 

temperature can be controlled to dissolve the sacrificial PIPAAm layer once fiber formation 

is complete. The geometry of the alginate fibers and structures is easily tuned by modifying 

the topography of the PDMS stamp used for micromolding. Furthermore, by micromolding 

blends of alginate and fibrinogen we can engineer microfibers that support cell adhesion and 

direct uniaxial cell alignment.

2. Results

2.1 Fabricating freestanding alginate microfibers

We developed a method to engineer microfibers and microstructures from alginate using a 

micromolding technique in combination with a thermally sensitive release surface. This is 

similar to previously published work on the SIA of ECM proteins, except instead of 

microcontact printing ECM proteins onto a surface, the PDMS stamp was used as a 

micromold. The basic process is illustrated in Figure 1 using the example of alginate fibers, 

but essentially any design that can be engineered into the PDMS stamp can be generated. 

Briefly, a glass coverslip was spincoated with PIPAAm and placed on top of a hotplate set to 

45 °C to prevent dissolution of the thermally sensitive PIPAAm layer. A 10 μL drop of 2% 

alginate dissolved in DI water was then placed on top of the PIPAAm (Figure 1a). 
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Immediately, a topographically patterned PDMS stamp was pressed onto the PIPAAm-

coated glass coverslip, displacing the alginate solution (Figure 1b), and heated until the 

alginate was completely dry. Next, the PDMS stamp was removed, leaving behind dried 

alginate fibers on the PIPAAm surface corresponding to the negative pattern of the PDMS 

stamp (Figure 1c). To release the alginate fibers from the PIPAAm surface, a 2% CaCl2 

solution at 40 °C was added (Figure 1d). Cooling below the lower critical solution 

temperature of the PIPAAm (~32 °C) triggered its hydration and dissolution, which 

subsequently released the Ca2+ crosslinked, insoluble alginate fibers from the surface 

(Figure 1e). Micromolded polysaccharides are typically used for cell encapsulation 

applications [5, 6, 34], but we sought to leverage our approach to create microstructured 

scaffolds that were also cell adhesive. Previous work has shown that alginate can be 

modified with RGD peptides [9, 36, 37], growth factors [20], or blended with fibrin [38] or 

collagen [39, 40] in order to bind cells. Based on this work, we blended the 2% alginate 

solution with 20 mg/mL fibrinogen (Figure 1a) and then added 10 units/mL of thrombin to 

the CaCl2 release solution to crosslink the fibrinogen into fibrin. This approach creates a 

composite alginate-fibrin hydrogel that can be micromolded in the same way as the 100% 

alginate.

Releasing crosslinked alginate microfibers from the surface requires both the CaCl2 in 

solution to crosslink the alginate as well as the thermally-sensitive PIPAAm layer to enable 

non-destructive release. For example, alginate fibers, 30 μm wide and 1 cm long, were 

micromolded onto a glass surface without the PIPAAm layer, and while able to crosslink in 

a 2% CaCl2 solution, they remained permanently bound to the surface, even after 12 hours 

(Figure 2a). While thicker alginate structures on the millimeter scale might be able to be 

peeled off the glass surface, the micrometer-thick fibers we engineered were too fragile. 

Therefore, a release surface was necessary to non-destructively release the alginate 

microfibers. While there are other materials that can potentially be used besides PIPAAm, 

our previous work has demonstrated the ability to use PIPAAm to nondestructively release 

delicate ECM protein fibers only 10 nm thick. As expected, CaCl2 was also necessary to 

crosslink the alginate microfibers that were on the PIPAAm surface. Rehydrating with 40 °C 

DI water without CaCl2 failed to form alginate fibers upon dissolution of PIPAAm, and the 

alginate simply dissolved into solution (Figure 2b). We then evaluated a high and low 

concentration of CaCl2 and showed that a 0.5% w/v (Figure 2c) and 2% w/v (Figure 2d) 

were capable of achieving fiber formation. While we did not observe any structural 

differences as a function of CaCl2 concentration, previous work in the literature suggests 

that the elastic modulus can be tuned with CaCl2 concentrations from 10 to 100 mM (0.15% 

to 1.5% w/v) to give elastic moduli of 4 to 60 kPa [24]. Further investigation is needed to 

determine how CaCl2 concentration affects structural and mechanical properties of the 

freestanding, microscale alginate fibers we have engineered.

2.2 Alginate microfiber morphology pre- and post-release

To morphologically characterize the alginate microfibers we used confocal microscopy to 

measure the width and thickness both pre-release and post-release. Alginate was 

fluorescently labeled and micromolded to form 20 μm (Figure 3a) and 50 μm (Figure 3f) 

wide fibers. Upon crosslinking and thermally triggered release, both alginate microfibers 
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noticeably decreased in their width (Figure 3b and 3g). Generating a cross-sectional view 

from the confocal 3D image demonstrated that the thickness of the microfibers was uniform 

(Figure 3c and 3h). Interestingly, a thin layer of alginate was visible between the fibers, but 

did not crosslink upon release, suggesting there is a minimum thickness for fiber formation. 

Quantitatively, alginate microfibers initially 19.71 ± 0.19 μm in width pre-release decreased 

to 5.45 ± 2.58 μm in width post-release (Figure 3d, n=40, P<0.01). Similarly, alginate 

microfibers initially 50.00 ± 0.22 μm in width decreased to 15.79 ± 10.42 μm in width post-

release (Figure 3i, n=40, P<0.01). Thus, for both the 20 and 50 μm wide fibers, the width 

decreased ~70% upon release from the PIPAAm. The pre-release thickness of 20 μm (Figure 

3c) and 50 μm (Figure 3h) wide alginate microfibers was 2.72 ± 0.17 μm and 2.96 ± 0.21 

μm, respectively (n = 12 for both). Upon thermally triggered release, the thickness of the 20 

μm and 50 μm wide alginate fibers increased to 3.48 ± 0.61 μm (Figure 3e, n = 12) and 4.00 

± 0.51 μm (Figure 3j, n=12), respectively. This corresponds to a ~70% decrease in width and 

a ~30% increase in thickness, which we attributed to the hydration of the alginate once it 

was no longer confined to a specific shape by adhesion to the underlying PIPAAm surface. 

Because the microfibers were very long, we were unable to quantify changes in length. 

However, confocal analysis did show that we were capable of engineering alginate 

microfibers where the thickness and width were well defined by the depth and spacing of the 

features in the PDMS stamp, respectively.

2.3 Fabricating complex alginate microstructures

In addition to microfibers, we also fabricated a variety of complex alginate microstructures 

by changing the features on the PDMS stamp used as the mold. For example, we fabricated 

alginate sheets with well-defined, 75 μm wide square pores (Figure 4a). After hydration in 

2% CaCl2 and thermally triggered release from the PIPAAm surface, the fidelity and spatial 

arrangement of the pores remained intact. Similarly, we also fabricated a sheet of alginate 

with 50 μm-wide circular pores that also maintained their fidelity and spatial arrangement 

upon release in 2% CaCl2 solution (Figure 4b). Thus, by adjusting the topography of the 

PDMS stamp, alginate sheets with well-defined pore size, spacing, geometry and 

arrangement can be easily fabricated. We were also able to fabricate complex, freestanding 

alginate microstructures. As proof-of-concept, we fabricated multi-armed alginate stars 

where each arm was 100 μm in length and 20 μm in width (Figure 4c). Similar to the 

aforementioned alginate fibers and porous sheets, the star patterns could be micromolded 

onto the PIPAAm surface with high pattern fidelity. The alginate stars also retained their 

morphology after release in 2% CaCl2 solution. While some of the star patterns managed to 

fold over themselves, they still maintained their initial micromolded geometry. Thus, it is 

evident that a variety of complex shapes and structures can be fabricated and released from 

the surface using our approach. With recent advances in photolithographic processes it is 

possible to fabricate PDMS stamps with features on a submicron level; potentially enabling 

the fabrication of extremely complex and intricate alginate microstructures, or even 

nanostructures. However, the failure of submicron thick alginate films to crosslink (see area 

between fibers in Figure 3c and 3h) suggests there is a lower limit for there to be enough 

alginate to crosslink effectively. Further investigation is needed to determine the resolution 

limits of what can effectively be micromolded, crosslinked and released while retaining 

fidelity and structural integrity.
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2.4 Fabrication of alginate-fibrin fibers to control cell adhesion and alignment

While alginate has gained popularity for a variety of biomedical applications ranging from 

drug delivery to cell encapsulation, a limitation of this material for tissue engineering is the 

inability of cells and serum proteins to bind/adsorb [13]. One option is to covalently modify 

the alginate with polypeptide sequences to add bioactivity, such as the RGD amino acid 

sequence to bind cell surface integrins [9, 36]. However, we chose to simply blend the 

alginate with an ECM protein, in this case fibrinogen, which has been shown previously to 

increase cell adhesion to bulk alginate scaffolds [38]. We combined 20 mg/ml alginate 

solution with 20 mg/ml fibrinogen and then micromolded it as described for the pure 

alginate microfibers. We found that higher concentrations of fibrinogen prevented good 

pattern fidelity due to premature crosslinking and formation of a fibrin gel on the PIPAAm 

surface prior to micromolding (data not shown). To crosslink and release the microfibers we 

used a 2% CaCl2 solution mixed with 10 units/mL thrombin to catalyze the conversion of 

fibrinogen to fibrin [41]. Note that for alginate-fibrin blends we decreased the hotplate 

temperature from 45 °C to 40 °C to avoid thermal denaturing of the fibrinogen.

We analyzed the morphology of alginate-fibrin microfibers in a dry, pre-release state and a 

hydrated, post-release state using confocal microscopy in order to determine changes in 

width and thickness (Figure 5a and 5b). Unlike the pure alginate fibers that had a uniform 

appearance, the alginate-fibrin microfibers had a speckled appearance that we interpreted as 

phase separation into alginate and fibrin rich domains within the microfiber. The ability to 

release intact microfibers indicated that the alginate-fibrin blends maintained structural 

integrity during the release process. However, unlike the pure alginate microfibers that 

underwent large dimensional changes upon hydration and release (Figure 3b, g), the released 

alginate-fibrin microfibers had a morphology that was closer to the pre-release state. 

Consistent with the results for the alginate microfibers, cross-sections from the 3D confocal 

images demonstrated that the thickness of the alginate-fibrin microfibers was uniform 

(Figure 5c). Quantitative analysis showed the alginate-fibrin microfibers initially 30.48 ± 

0.94 μm in width pre-release decreased to of 24.10 ± 5.44 μm in width post-release (Figure 

5d, n = 29, P<0.01). This ~20% decrease in width is much smaller than the ~70% decrease 

in width we observed with pure alginate microfibers, suggesting the presence of cross-linked 

fibrin may limit the alginate from changing shape during release. The thickness of the 

alginate-fibrin microfibers was initially 3.14 ± 0.29 μm pre-release and increased to 3.96 ± 

0.25 μm post-release (Figure 5e, n = 11, P<0.01), a ~30% increase in thickness and similar 

to the increase observed with pure alginate microfibers. Thus, the presence of cross-linked 

fibrin altered the morphological changes associated with hydration and release.

Next, we evaluated the stability of the alginate-fibrin microfibers under cell culture 

conditions with and without cells and tested their ability to support cell adhesion. We chose 

to conduct these experiments using alginate and alginate-fibrin microfibers micromolded 

directly onto glass coverslips because this immobilized the fibers and facilitated microscopic 

observation over a multiday time period. First, we investigated the stability of the alginate 

and alginate-fibrin microfibers in media in a cell culture incubator over 5 days (Figure 6a 

and 6b). As expected, in both cases the microfibers maintained their morphology, an 

indication that these microfibers were not susceptible to hydrolysis over this time period. 
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Second, we seeded alginate (Figure 6c) and alginate-fibrin (Figure 6d) microfibers with 

C2C12 cells and cultured them for 5 days. C2C12s did not adhere to the pure alginate 

microfibers and instead adhered to the glass surface between microfibers, despite being 

pretreated with Pluronics F127 (Figure 6c). The cells were able to proliferate and after 3 

days, at regions of high cell density, were able to migrate across the microfibers. However, 

even after 5 days in culture the C2C12s did not adhere directly to the alginate microfibers, 

which via fluorescent imaging remained intact and predominantly served as topographical 

barriers that promoted cell alignment parallel to the length of the microfibers. In contrast, 

C2C12s seeded onto the alginate-fibrin microfibers were able to initially adhere and align 

along the length of the microfibers (Figure 6d). By day 3, the cells began to bridge between 

parallel microfibers and by day 5, fluorescent imaging confirmed that the cells began to 

degrade the alginate-fibrin microfibers. While there was a general overall alignment of the 

cells in the direction the microfibers were initially oriented, alginate-fibrin microfibers had 

clearly degraded to the point where some cells were no longer using them as a guidance cue. 

These results confirmed that the fibrin component of the microfibers was active as a cell 

binding moiety and at sufficient density to support cell adhesion. Further, the fibrin was also 

susceptible to cell-mediated degradation and by 5 days had mostly detached from the glass, 

undergone substantial morphological changes and appeared to break apart in places. Further 

investigation is needed to determine how fibrinogen concentration in the precursor solution 

affects the adhesivity and degradation rate of the microfibers and how much this can be 

tuned.

Next, we evaluated whether the alginate-fibrin microfibers were capable of supporting cell 

adhesion as free-standing scaffolds. First, as a control, we micromolded alginate microfibers 

on PIPAAm, seeded C2C12 cells, cultured them for 12 hours and then released the 

microfibers (Figure 7a). By doing this the microfibers remained attached to the surface 

during seeding and cell culture, simplifying microscopic evaluation. As expected, even after 

12 hours in culture, the cells were unable to adhere to the alginate microfibers and when 

released we did not observe any adherent cells to the free-standing microfibers. Next, we 

repeated the experiment using alginate-fibrin microfibers and after 12 hours in culture, we 

released the microfibers from the surface. Using fluorescent imaging of the cell nuclei and 

actin filaments we confirmed that cells adhered to the alginate-fibrin microfibers and 

remained adhered after thermally triggered release (Figure 7b). This is important, because 

the alginate-fibrin microfibers undergo changes in width and thickness that could potentially 

disrupt cell adhesion (Figure 5d and 5e). Examining cells adhered to a single alginate-fibrin 

microfiber clearly showed that they were aligned along the length of the microfiber, with the 

potential to form a nearly continuous cell strand (Figure 7c). It was also possible to engineer 

an array of parallel alginate-fibrin microfibers with adhered cells by creating a peripheral 

frame that held all the microfibers in position (Figure 7d). This resulted in a large number of 

cells aligned on parallel microfibers, a useful structure for the potential of engineering of 

aligned skeletal muscle tissue from these myoblasts.

While the C2C12 cells were observed to adhere and align onto the alginate-fibrin 

microfibers after a culture period of 12 hours, Figure 6 suggested that longer culture times 

may lead to the degradation of the fibers and loss of alignment. Thus, we also investigated 

stability of the alginate-fibrin microfibers after a longer culture time of 3 days. Fluorescent 
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imaging indicated that some degradation of the microfibers had occurred, but they still 

released as continuous fibers (Figure 7e and 7g). Fluorescent imaging of the bound cells 

revealed robust attachment and alignment in the fiber direction (Figure 7f and 7h). This 

alignment appeared better than for C2C12 cells seeded on the alginate-fibrin microfibers 

micromolded on glass (Figure 6d) and may be due to the PIPAAm surface being a better 

repellent of cell adhesion than the Pluronics-treated glass surface. These experiments 

confirmed that the alginate-fibrin microfibers could be used to engineer a free-standing 

network of aligned cells. Further studies will be needed to determine how adhesivity and 

degradation can be modulated by adjusting the concentration of fibrinogen in the precursor 

solution, with a near term goal of maximizing and maintaining alignment long enough for 

the C2C12 myoblasts to fuse into contractile myotubes.

3. Discussion

The ability of micro- and nanoscale structures and topographies to influence cell function 

has led to the emergence of new methods to fabricate alginate materials on these scales for 

tissue engineering [23, 25] and drug delivery applications [23, 42]. Here we have developed 

a method to engineer freestanding alginate and alginate-fibrin microfibers and 

microstructures with tunable planar dimensions and a thickness on the order of ~3-4 μm. 

The unique aspect of this work is the micromolding in combination with the PIPAAm 

release surface, which enables very thin and delicate structures to be released 

nondestructively. Further, the micromolding enables high fidelity and high uniformity of the 

engineered structures. An advantage of this approach over electrospun alginate fibers is the 

fact that we do not need to incorporate additives such as poly(ethylene glycol) [9, 10] or 

poly(vinyl alcohol) [43]. Previous work in the literature has demonstrated the ability to 

fabricate micromolded alginate and other hydrogel structures for cell encapsulation [5, 6, 

34]. However, these alginate structures are generally on the order of tens to hundreds of 

micrometers in thickness and can be manually harvested off of the PDMS substrate they 

were micromolded on. In contrast, alginate structures with thicknesses of <10 μm are more 

difficult to remove due to the higher surface area and greater, non-specific interfacial 

adhesion. For example, alginate microfibers formed directly on glass did not release (Figure 

2a) over a 12 hour period. Attempts to manually remove the microfibers from the glass 

surface served to disrupt the pattern fidelity and clearly broke some of the alginate 

microfibers (data not shown). Further, when cells are bound to the alginate-fibrin 

microfibers mechanical damage to the cell, from excessive strain during attempted removal, 

becomes an even greater concern. Thus, the use of the sacrificial PIPAAm layer is critical 

for the nondestructive release of the assembled alginate microfibers and microstructures 

from the surface, both with and without cells.

For freestanding alginate microfibers and microstructures to serve as scaffolds for tissue 

engineering applications, the alginate needs to be modified in order to support cell adhesion 

[13]. One approach to do this has been to covalently modify the alginate to contain the RGD 

cell adhesion peptide [9, 36, 37]. This has been shown to enhance cell adhesion but 

incorporates only a single type of integrin binding site, which is only one part of the 

biofunctionality of full length ECM proteins [44]. For example, the RGD peptide sequence 

on the tenth, type III repeat unit of fibronectin is neighbored by the proline-histidine-serine-
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arginine-asparagine (PHSRN) synergy site on the ninth, type III repeat. The juxtaposition of 

these two domains promotes α5β1 integrin adhesion whereas the RGD sequence alone 

promotes adhesion via the αvβ3 integrin [45, 46]. Binding of different integrins has been 

shown to promote different downstream cell responses such as epithelial-to-mesenchymal 

transition in alveolar epithelial cells [47]. Alginate has recently been modified with both the 

PHSRN and RGD peptide sequences, which has been shown to improve the differentiation 

of normal human osteoblasts [48]. However, adding small peptide sequences to alginate is 

limited in the total number of moieties that can be integrated. Integration of full-length ECM 

proteins has been achieved using alginate-fibrin [38] and alginate-collagen [39, 40] 

composite hydrogels, and using streptavidin functionalized alginate to bind to biotinylated 

ECM proteins [24]. Here we chose to incorporate fibrinogen into the alginate precursor 

solution because it is an established and straightforward way to introduce cell binding sites 

into the microfibers (Figures 6 and 7). Further, fibrin is biodegradable via cell-secreted 

enzymes and thus provides a substrate that can be remodeled by the cells. This is indeed 

what we observed when cells were cultured on alginate-fibrin microfibers over a prolonged 

period of time (Figure 6d and 7e to 7h). It should be noted that the alginate-fibrin 

microfibers we engineered initially had widths previously shown to be able to uniaxially 

align adhered muscle cells [49]. This was precisely what we observed during short culture 

periods of 12 hours (Figures 7b to 7d), but over multiple days, the cells were able to degrade 

the fibers and the degree of guidance decreased (7e to 7h). Because the degradation was due 

to cell-mediated remodeling and not hydrolysis, it is conceivable that by tuning the 

concentration of fibrinogen, the amount of thrombin and/or using aprotinin that we can also 

tune the degradation rate of the fibers.

The micromolding and PIPAAm release approach described in this paper is also more 

broadly applicable to other biopolymers and compositions. For example, while we only 

investigated a single concentration of fibrinogen in our alginate-fibrin microfibers, we 

anticipate that a wider range is possible, which would enable tuning of the cell adhesivity 

and biodegradation characteristics [50, 51]. Further, other ECM proteins such as collagen 

type I [52] or Matrigel [53] could be blended with the alginate to form composite hydrogels. 

In these cases, physiologic temperature could be used to trigger gelation, rather than the 

thrombin used for the fibrin. More complicated combinations are also possible by blending 

multiple ECM proteins with other bioactive molecules such as growth factors. For example, 

it is conceivable that fibronectin could be mixed in with an alginate-collagen blend and then 

platelet-derived growth factor (PDGF) could be immobilized on the scaffold by binding to 

the fibronectin [54]. Future work will focus on expanding the materials that can be used in 

this micromolding technique and applying it to a variety of tissue engineering applications. 

Specifically, we will build upon the preliminary work using C2C12 myoblasts adhered to 

alginate-fibrin microfibers (Figure 7) by differentiating the cells into myotubes and creating 

‘muscular threads’ that we can engineer into functional muscle tissue constructs.

4. Conclusion

We have developed a method to fabricate alginate and alginate-fibrin microfibers and 

microstructures using a micromolding technique in combination with a nondestructive 

release surface. Proof-of-concept was demonstrated by engineering freestanding structures 
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with tunable planar (XY) dimensions and a thickness of <5 μm. Scaffolds of assembled 

alginate microfibers were easily manipulated upon release suggesting a range of potential 

biomedical applications. By fabricating alginate-fibrin microfibers, this approach leveraged 

the bioactive properties of ECM proteins in a microstructured material to promote cell 

adhesion and alignment on a freestanding scaffold. Future work will expand this technology 

by exploring the tunability of the system. Specifically, we will investigate how CaCl2 

concentration affects the mechanical properties of the alginate microfibers in order to tune 

the elastic modulus. This would lead to alginate-based microfibers and microstructure 

where, by blending with other ECM proteins, we would be able to engineer the geometrical, 

topographical, biochemical, and mechanical properties for potential use in a wide range of 

tissue engineering applications.

5. Methods

5.1 Fabrication of freestanding alginate microfibers and microstructures

The microfabricated PDMS stamps used to micromold the alginate and alginate-fibrin 

blends were prepared using photolithography, similar to previously published procedures 

[35, 55]. Briefly, glass wafers were spincoated with SPR 220.3 positive photoresist 

(Microchem) and exposed to UV light through a transparency-based photomask. Exposed 

regions were removed using MF-319 developer (Microchem) leaving behind a glass wafer 

with a microtopographically patterned photoresist layer on top. Sylgard 184 PDMS (Dow 

Corning) was mixed in a 10:1 base to curing agent ratio, degassed and then cast over the 

microfabricated wafers and cured for a minimum of 4 hours at 65 °C. The PDMS was then 

peeled off the wafers and cut into 1.5 cm2 stamps. Prior to use, the PDMS stamps were 

sonicated in a 50% ethanol solution to remove contaminants and then dried under a stream 

of nitrogen.

Alginate microfibers and microstructures were fabricated using micromolding with the 

PDMS stamps. First, a PIPAAm coated 25 mm diameter glass coverslip was prepared by 

spincoating a 10% PIPAAm (Polysciences Inc) in a 1-butanol (w/v) solution. Next a 10 μL 

droplet of 2% (w/v, g/mL) sodium alginate (FMC Biopolymer) in DI water was pipetted 

onto the PIPAAm coated glass coverslip. A microfabricated PDMS stamp was then pressed 

onto the alginate droplet (Figure 1a) and into conformal contact with the PIPAAm surface. 

To prevent premature dissolution the PIPAAm coated coverslips, PDMS stamps, and 

alginate solution were pre-heated to 40 °C in an oven and all micromolding took place on 

top of a hot plate set to 45 °C. The PDMS stamp was kept in conformal contact until the 

alginate solution had dried, typically 2-3 hours (Figure 1b). Once dried, the PDMS stamp 

was removed (Figure 1c) and the fidelity of the micromolded alginate microfibers and 

microstructures were inspected using phase contrast microscopy. The alginate features were 

released by hydration in 40 °C CaCl2 (Sigma-Aldrich) solution with concentrations ranging 

between 0.5-2% (w/v) (Figure 1d). Allowing the solution to cool below the LCST resulted 

in the dissolution of PIPAAm and the release of assembled alginate microfibers and 

microstructures (Figure 1e). To fabricate alginate-fibrin microfibers we mixed 20 mg/mL of 

fibrinogen with 20 mg/mL of fluorescently labeled alginate. This solution was micromolded 

and dried as described for pure alginate. To crosslink and release the alginate-fibrin 
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microfibers we used a 40 °C, solution of 2% w/v CaCl2 and 10 units/ml thrombin. The 

thrombin catalyzed the conversion of fibrinogen to fibrin enabling the release of 

freestanding, assembled alginate-fibrin microfibers.

5.2 Characterization of alginate microfiber morphology

Fluorescently-labeled alginate and alginate-fibrin microfibers were imaged using confocal 

microscopy to measure the width and thickness before and after release from the surface. 

The alginate was fluorescently labeled based on published protocols [56]. Briefly, 2% w/v 

alginate solution was combined with 5.68 mM 6-aminofluorescein, 11.36 mM 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride, and 11.36 mM N-

hydroxysulfosuccinimide sodium salt (Sigma-Aldrich) and stirred for 48 hours. The solution 

was then dialyzed to remove unreacted 6-aminofluorescein and the alginate, with ~1/20 of 

the available carboxylic groups fluorescently-labeled, was stored at 4 °C and protected from 

light. The fluorescently-labeled alginate and alginate-fibrin microfibers were imaged at 20x 

and 63x using confocal microscopy (LSM 700, Zeiss) to acquire 2D images and 3D image 

z-stacks. The images were imported into ImageJ (National Institutes of Health) [57] for 

quantitative analysis, using the 20x magnification images to measure the width of the 

alginate microfibers and the orthogonal cross-sections of the 63x z-stacks to measure the 

thickness of the microfibers. The Mann-Whitney Rank Sum Test with statistical significance 

based on P<0.01 was used for all statistical comparisons (Sigma Plot, Systat Software Inc).

5.4 Cell Culture, Seeding and Fluorescent Staining

The murine C2C12 myoblast cell line (CRL-1722, ATCC) was cultured according to 

published methods [55]. Briefly, cells were grown in culture media consisting of Dulbecco’s 

Modified Eagle Medium supplemented with 10% fetal bovine serum, 1% L-glutamine (200 

mM), 1% 10,000 unit penicillin-streptomycin solution. For experiments, 1×105 cells 

suspended in media were seeded on the different experimental conditions and cultured for 

12 hours, 3 days, or 5 days (Figure 6). When seeding on the PIPAAm-coated coverslips all 

of the solutions were warmed to 37 °C to prevent premature dissolution of the PIPAAm 

layer. After 12 hours, 3 days or 5 days of culture samples without PIPAAm were fixed in 

4% formaldehyde (Polysciences Inc) for 15 min and then washed 3 times in PBS. For 

samples with PIPAAm the temperature of the solution was allowed to cool below 32 °C to 

dissolve the PIPAAm layer and release the alginate or alginate-fibrin microfibers. After 

thermally triggered release, the cells were similarly fixed in 4% formaldehyde. All samples 

with cells were incubated for 1 hour with a 200 μL solution of PBS containing 1 μL of DAPI 

and 2 μL Phalloidin conjugated to Alexa-Flour 635 (Invitrogen) to stain for cell nuclei and 

actin filaments, respectively. The samples were then washed three times in PBS and then 

mounted with a drop of Prolong Gold antifade reagent (Invitrogen) on microscope glass 

slides. The mounted samples were stored at room temperature and protected from light for 

12 hours to allow the Prolong reagent to cure.
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Figure 1. A schematic of the alginate microfiber and microstructure fabrication process
(a) A microfabricated PDMS stamp is pressed onto an alginate or alginate-fibrinogen drop 

on a PIPAAm coated coverslip. This is performed on a hotplate set to 45 °C to prevent 

dissolution of the PIPAAm layer. (b) The alginate is heated with the PDMS stamp in 

conformal contact to dry the alginate onto the PIPAAm surface. (c) Removal of the PDMS 

stamp yields the formation of dried, micromolded alginate microfibers. (d) The alginate 

fibers and structures are hydrated in a 40 °C CaCl2 solution. If desirable, cells are also 

seeded at this step. (e) Cooling the solution below the LCST of PIPAAm (32 °C) causes the 

dissolution of the PIPAAm layer and the release of assembled alginate microfibers and 

microstructures.
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Figure 2. CaCl2 and PIPAAm are necessary for the release of freestanding, assembled alginate 
microfibers
(a) When alginate was micromolded onto a glass surface, hydration in a 2% CaCl2 solution 

enabled the alginate to crosslink, but the resultant fibers remained permanently bound to the 

glass surface. (b) Alternatively, alginate fibers that were micromolded onto a PIPAAm 

surface and hydrated with just DI water failed to crosslink and ultimately dissolved into 

solution. (c) CaCl2 concentrations as low as 0.5% were sufficient to crosslink the alginate 

and produce microfibers upon dissolution of PIPAAm. (d) A higher concentrations of 2% 

CaCl2 also effectively crosslinked the alginate microfibers. Scale bars are 50 μm.
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Figure 3. Alginate microfibers have tunable morphology based on the PDMS stamp used for 
micromolding
Confocal imaging of fluorescently-labeled alginate was used to analyze 20 μm wide fibers 

micromolded onto the PIPAAm surface (a) before and (b) after hydration and release into a 

2% CaCl2 solution. (c) A representative cross-sectional view of the 20 μm wide fibers pre-

release. (d) Quantification of microfiber width pre- and post-release from the PIPAAm layer 

demonstrates that microfibers were initially uniform with a width of 19.71 ± 0.19 μm pre-

release and decreased to a width of 5.45 ± 2.58 μm post-release (n = 40). (e) The thickness 

increased from 2.72 ± 0.17 μm pre-release to 3.48 ± 0.61 μm post-release (n = 12). (f) 

Repeating this with 50 μm wide fibers shows (f) before and (g) after hydration and release 

into a 2% CaCl2 solution. (h) A representative cross-sectional view of the 50 μm wide fibers 

pre-release. (i) The alginate microfibers had a width of 50.00 ± 0.22 μm pre-release that 

decreased to a width of 15.79 ± 10.42 μm post-release. (j) Similar to the 20 μm wide 

microfibers, the thickness increased upon release from 2.96 ± 0.21 μm to 4.00 ± 0.51 μm. 

Scale bars are (a, b, f, g) 50 μm and (c and h) 5 μm. The symbol ‘#’ denotes a statistically 

significant difference with P<0.01.
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Figure 4. Fabricating freestanding, complex alginate structures
(a) An alginate sheet with 75 μm wide square pores and (b) 50 μm wide circular pores could 

be micromolded and thermally released while retaining their connectivity, spatial 

arrangement, and shape. (c) Similarly, complex structures such as a multi-arm star could be 

micromolded and released and retained their geometry. Scale bars are 50 μm.

Szymanski and Feinberg Page 17

Biofabrication. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Quantification of alginate-fibrin microfiber morphology
Confocal imaging of fluorescently labeled alginate was used to analyze 30 μm wide 

alginate-fibrin microfibers (a) before and (b) after hydration and release into a 2% CaCl2 

and 10 U/ml thrombin solution. (c) A representative cross-sectional view of a 30 μm wide 

fiber pre-release. (d) The microfibers were initially uniform with a width of 30.48 ± 0.94 μm 

pre-release and decreased to a width of 24.10 ± 5.44 μm post-release (n = 29). (e) The 

thickness increased from 3.14 ± 0.29 μm pre-release to 3.96 ± 0.25 μm post-release (n = 11). 

Scale bars are (a) and (b) 50 μm and (c) 5 μm. The symbol ‘#’ denotes a statistically 

significant difference with P<0.001.

Szymanski and Feinberg Page 18

Biofabrication. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Determining the stability of alginate and alginate-fibrin microfibers over time in 
physiological solution with and without cells
(a) Alginate and (b) alginate-fibrin microfibers were micromolded onto a glass substrate and 

kept in growth medium for 5 days. In both cases, the microfibers remained intact. Unlike the 

pure alginate microfibers, the alginate-fibrin microfibers had a textured appearance. (c) 

Alginate microfibers were also micromolded onto a glass substrate and seeded with 105 

C2C12 cells. After 5 days in culture, fluorescent imaging demonstrated that the alginate 

fibers remained intact in the original micromolded form. Cells instead adhered to the glass 

region in-between the alginate microfibers and aligned parallel to the length of the 

microfibers. (d) Alginate-fibrin microfibers were also micromolded onto a glass substrate 

and seeded with 105 C2C12 cells. After 5 days in culture, the cells were able to degrade and 

rearrange the alginate-fibrin microfibers. Scale bars are 100 μm for all day 1 and day 3 
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images, 50 μm for all day 5 20x images, and 25 μm for all day 5 40x images. Cells are 

labeled for nuclei (blue) and actin filaments (red) and the alginate is fluorescently labeled 

(green).
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Figure 7. Fabricating alginate-fibrin microfibers to control cell adhesion and alignment
C2C12 myoblasts were seeded on fluorescently-labeled, micromolded alginate fibers while 

still attached to the PIPAAm surface and cultured for 12 hours. (a) The alginate fibers were 

unable to bind cells as indicated by the lack of adherent cells once released from the 

PIPAAm surface. (b) Cells remained adherent when alginate-fibrin microfibers were 

micromolded on PIPAAm and then released. Fluorescence imaging demonstrated that the 

bioactive alginate-fibrin fibers not only promoted adhesion but also influence cell alignment 

along (c) a single microfiber or (d) along multiple parallel fibers to yield an overall cell 

alignment within the freestanding construct. To assess the stability of the alginate-fibrin 

microfibers over a longer period, C2C12 myoblasts were seeded on micromolded alginate-

fibrin microfibers and cultured for 3 days. Fluorescent imaging of the microfibers at (e) 20x 

and (g) 40x magnification indicated that the fibers, while slightly degraded, were still able to 

properly release from the PIPAAm surface. (f, h) After 3 days, the cells also remained 

adherent and aligned along the length of the microfibers. Cells were labeled for nuclei 

(blue), actin filaments (red), and the alginate was fluorescently labeled (green). Scale bars 

are (a) to (e) 50 μm and (g) and (h) 25 μm.
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